Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 380-386, 2024 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-38500435

RESUMEN

Objective: To review the research progress of magnesium and magnesium alloy implants in the repair and reconstruction of sports injury. Methods: Relevant literature of magnesium and magnesium alloys for sports injury repair and reconstruction was extensively reviewed. The characteristics of magnesium and its alloys and their applications in the repair and reconstruction of sports injuries across various anatomical sites were thoroughly discussed and summarized. Results: Magnesium and magnesium alloys have advantages in mechanical properties, biosafety, and promoting tendon-bone interface healing. Many preclinical studies on magnesium and magnesium alloy implants for repairing and reconstructing sports injuries have yielded promising results. However, successful clinical translation still requires addressing issues related to mechanical strength and degradation behavior, where alloying and surface treatments offer feasible solutions. Conclusion: The clinical translation of magnesium and magnesium alloy implants for repairing and reconstructing sports injuries holds promise. Subsequent efforts should focus on optimizing the mechanical strength and degradation behavior of magnesium and magnesium alloy implants. Conducting larger-scale biocompatibility testing and developing novel magnesium-containing implants represent new directions for future research.


Asunto(s)
Traumatismos en Atletas , Medicina Deportiva , Humanos , Magnesio , Aleaciones , Prótesis e Implantes , Ensayo de Materiales , Implantes Absorbibles , Corrosión
2.
Clin Orthop Surg ; 15(6): 983-988, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045572

RESUMEN

Background: To evaluate the feasibility of treating odontoid fractures in the Chinese population with two cortical screws based on computed tomography (CT) scans and describe a new measurement strategy to guide screw insertion in treating these fractures. Methods: A retrospective review of cervical computed tomographic scans of 128 patients (aged 18-76 years; men, 55 [43.0%]) was performed. The minimum external transverse diameter (METD), minimum external anteroposterior diameter (MEAD), maximum screw length (MSL), and screw projection back angle (SPBA) of the odontoid process were measured on coronal and sagittal CT images. Results: The mean values of METD and MEAD were 10.0 ± 1.1 mm and 12.0 ± 1.0 mm, respectively, in men and 9.2 ± 1.0 mm and 11.0 ± 1.0 mm, respectively, in women. Both measurements were significantly higher in men (p < 0.001). In total, 87 individuals (68%) had METD > 9.0 mm that could accommodate two 3.5-mm cortical screws. The mean MSL value and SPBA range were 34.4 ± 2.9 mm and 13.5°-24.2°, respectively, with no statistically significant difference between men and women. Conclusions: The insertion of two 3.5-mm cortical screws was possible for anterior fixation of odontoid fractures in 87 patients (68%) in our study, and there was a statistically significant difference between men and women.


Asunto(s)
Fijación Interna de Fracturas , Fracturas Óseas , Apófisis Odontoides , Fracturas de la Columna Vertebral , Femenino , Humanos , Masculino , Tornillos Óseos , Pueblos del Este de Asia , Estudios de Factibilidad , Fijación Interna de Fracturas/instrumentación , Fijación Interna de Fracturas/métodos , Fracturas Óseas/cirugía , Apófisis Odontoides/diagnóstico por imagen , Apófisis Odontoides/cirugía , Apófisis Odontoides/lesiones , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/cirugía , Tomografía Computarizada por Rayos X , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano
3.
J Neuroimmune Pharmacol ; 18(3): 476-494, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37658943

RESUMEN

Transplantation of curcumin-activated olfactory ensheathing cells (aOECs) improved functional recovery in spinal cord injury (SCI) rats. Nevertheless, little is known considering the underlying mechanisms. At the present study, we investigated the promotion of regeneration and functional recovery after transplantation of aOECs into rats with SCI and the possible underlying molecular mechanisms. Primary OECs were prepared from the olfactory bulb of rats, followed by treatment with 1µM CCM at 7-10 days of culture, resulting in cell activation. Concomitantly, rat SCI model was developed to evaluate the effects of transplantation of aOECs in vivo. Subsequently, microglia were isolated, stimulated with 100 ng/mL lipopolysaccharide (LPS) for 24 h to polarize to M1 phenotype and treated by aOECs conditional medium (aOECs-CM) and OECs conditional medium (OECs-CM), respectively. Changes in the expression of pro-inflammatory and anti-inflammatory phenotypic markers expression were detected using western blotting and immunofluorescence staining, respectively. Finally, a series of molecular biological experiments including knock-down of triggering receptor expressed on myeloid cells 2 (TREM2) and analysis of the level of apolipoprotein E (APOE) expression were performed to investigate the underlying mechanism of involvement of CCM-activated OECs in modulating microglia polarization, leading to neural regeneration and function recovery. CCM-activated OECs effectively attenuated deleterious inflammation by regulating microglia polarization from the pro-inflammatory (M1) to anti-inflammatory (M2) phenotype in SCI rats and facilitated functional recovery after SCI. In addition, microglial polarization to M2 elicited by aOECs-CM in LPS-induced microglia was effectively reversed when TREM2 expression was downregulated. More importantly, the in vitro findings indicated that aOECs-CM potentiating LPS-induced microglial polarization to M2 was partially mediated by the TREM2/nuclear factor kappa beta (NF-κB) signaling pathway. Besides, the expression of APOE significantly increased in CCM-treated OECs. CCM-activated OECs could alleviate inflammation after SCI by switching microglial polarization from M1 to M2, which was likely mediated by the APOE/TREM2/NF-κB pathway, and thus ameliorated neurological function. Therefore, the present finding is of paramount significance to enrich the understanding of underlying molecular mechanism of aOECs-based therapy and provide a novel therapeutic approach for treatment of SCI.


Asunto(s)
Microglía , Mucosa Olfatoria , Traumatismos de la Médula Espinal , Animales , Ratas , Antiinflamatorios/farmacología , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacología , Apolipoproteínas E/uso terapéutico , Curcumina/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Microglía/metabolismo , FN-kappa B/metabolismo , Recuperación de la Función , Transducción de Señal , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/trasplante
4.
Sci Rep ; 13(1): 11354, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443369

RESUMEN

There are various internal fixation methods in treating lumbosacral spinal tuberculosis. The study compared the stability and stress distribution in surrounding tissues/implants, such as discs, endplates and screw-rod internal fixation system, etc. when applying three different lumbar internal fixation methods to treat lumbosacral spinal tuberculosis. A finite element model was constructed and validated. The spinal stability was restored using three methods: a titanium cage with lateral double screw-rod fixation (group 1), autologous bone with posterior double screw-rod fixation (group 2), and a titanium cage with posterior double screw-rod fixation (group 3). For comparison, group 4 represented the intact L3-S1 spine. Finally, a load was applied, and the ranges of motion and Von Mises stresses in the cortical endplates, screw-rod internal fixation system and cortical bone around the screws in the different groups were recorded and analyzed. All six ranges of motion (flexion, extension, left/right lateral bending, left/right rotation) of the surgical segment were substantially lower in groups 1 (0.53° ~ 1.41°), 2 (0.68° ~ 1.54°) and 3 (0.55° ~ 0.64°) than in group 4 (4.48° ~ 10.12°). The maximum stress in the screw-rod internal fixation system was clearly higher in group 2 than in groups 1 and 3 under flexion, left/right lateral bending, and left/right rotation. However, in extension, group 1 had the highest maximum stress in the screw-rod internal fixation system. Group 2 had the lowest peak stresses in the cortical endplates in all directions. The peak stresses in the cortical bone around the screws were higher in group 1 and group 2 than in group 3 in all directions. Thus, titanium cage with posterior double screw-rod fixation has more advantages in immediate reconstruction of lumbosacral spinal stability and prevention of screw loosening.


Asunto(s)
Fusión Vertebral , Tuberculosis de la Columna Vertebral , Humanos , Análisis de Elementos Finitos , Tuberculosis de la Columna Vertebral/diagnóstico por imagen , Tuberculosis de la Columna Vertebral/cirugía , Titanio , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Rotación , Fenómenos Biomecánicos , Fusión Vertebral/métodos , Rango del Movimiento Articular
5.
Mater Today Bio ; 20: 100630, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37114092

RESUMEN

Modified macroporous structures and active osteogenic substances are necessary to overcome the limited bone regeneration capacity and low degradability of self-curing calcium phosphate cement (CPC). Curcumin (CUR), which possesses strong osteogenic activity and poor aqueous solubility/bioavailability, esterifies the side chains in hyaluronic acid (HA) to form a water-soluble CUR-HA macromolecule. In this study, we incorporated the CUR-HA and glucose microparticles (GMPs) into the CPC powder to fabricate the CUR-HA/GMP/CPC composite, which not only retained the good injectability and mechanical strength of bone cements, but also significantly increased the cement porosity and sustained release property of CUR-HA in vitro. CUR-HA incorporation greatly improved the differentiation ability of bone marrow mesenchymal stem cells (BMSCs) to osteoblasts by activating the RUNX family transcription factor 2/fibroblast growth factor 18 (RUNX2/FGF18) signaling pathway, increasing the expression of osteocalcin and enhancing the alkaline phosphatase activity. In addition, in vivo implantation of CUR-HA/GMP/CPC into femoral condyle defects dramatically accelerated the degradation rate of cement and boosted local vascularization and osteopontin protein expression, and consequently promoted rapid bone regeneration. Therefore, macroporous CPC based composite cement with CUR-HA shows a remarkable ability to repair bone defects and is a promising translational application of modified CPC in clinical practice.

6.
ACS Nano ; 17(4): 3818-3837, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36787636

RESUMEN

Neural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor. PDGF-MPHM were fabricated by a piezoelectric ceramic-driven thermal electrospray device, had an average size of 9 µm, and also had the ability to activate the PDGFRß of NSCs more effectively than PDGF-MPH. In vitro, PDGF-MPHM exerted strong neuroprotective effects by maintaining the proliferation and inhibiting the apoptosis of NSCs in the presence of myelin extracts. In vivo, PDGF-MPHM inhibited M1 macrophage infiltration and extrinsic or intrinsic cells apoptosis on the seventh day after SCI. Eight weeks after SCI, the T10 SCI treatment results showed that PDGF-MPHM + NSCs significantly promoted the survival of NSCs and neuronal differentiation, reduced lesion size, and considerably improved motor function recovery in SCI rats by stimulating axonal regeneration, synapse formation, and angiogenesis in comparison with the NSCs graft group. Therefore, our findings provide insights into the ability of PDGF-MPHM to be a promising therapeutic agent for SCI repair.


Asunto(s)
Hidrogeles , Traumatismos de la Médula Espinal , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Crecimiento Derivado de Plaquetas/uso terapéutico , Diferenciación Celular , Microesferas , Estudios Prospectivos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Péptidos/farmacología , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...